Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.

نویسندگان

  • Xinwei Dou
  • Ivana Hasa
  • Maral Hekmatfar
  • Thomas Diemant
  • R Jürgen Behm
  • Daniel Buchholz
  • Stefano Passerini
چکیده

Hard carbons are currently the most widely used negative electrode materials in Na-ion batteries. This is due to their promising electrochemical performance with capacities of 200-300 mAh g-1 and stable long-term cycling. However, an abundant and cheap carbon source is necessary in order to comply with the low-cost philosophy of Na-ion technology. Many biological or waste materials have been used to synthesize hard carbons but the impact of the precursors on the final properties of the anode material is not fully understood. In this study the impact of the biomass source on the structural and electrochemical properties of hard carbons is unraveled by using different, representative types of biomass as examples. The systematic structural and electrochemical investigation of hard carbons derived from different sources-namely corncobs, peanut shells, and waste apples, which are representative of hemicellulose-, lignin- and pectin-rich biomass, respectively-enables understanding and interlinking of the structural and electrochemical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries

Sodium ion batteries (SIBs) have attracted lots of attention over last few years due to the abundance and wide availability of sodium resources, making SIBs the most cost-effective alternative to the currently used lithium ion batteries (LIBs). Many efforts are underway to find effective anodes for SIBs since the commercial anode for LIBs, graphite, has shown very limited capacity for SIBs. Amo...

متن کامل

Extraction of Hemicellulose and Lignin from Sugarcane Bagasse for Biopolymer Films: Green Process

A hemicellulose is any of several heteropolymers , such as arabinoxylans, present along with cellulose in almost all plant cell walls. Hemicellulose has a random, amorphous structure with little strength. It is easily hydrolyzed by dilute acid or base as well as myriad hemicellulase enzymes. In this study, lignin and hemicellulose was extracted from sugarcane bagasse using the ammonium hydrolys...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Comparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse

Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...

متن کامل

Comparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse

Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ChemSusChem

دوره 10 12  شماره 

صفحات  -

تاریخ انتشار 2017